Hiram College

Research Opportunities in Physics

Prof. Mark Taylor has an active research program in the area of theoretical soft condensed matter physics. Taylor and his students investigate structural and thermodynamic properties of complex liquids, polymers, and biological macromolecules using analytic theory, numerical analysis, and advanced computer simulation algorithms. Taylor's recent work has focused on polymer phase transitions as relevant to biological systems and environmentally responsive smart materials. This research is funded by the National Science Foundation, Division of Materials Research [grants NSF-DMR 0804370 (2008-2012), 1204747 (2012-2016), and 1607143 (2016-2020)].

Taylor routinely engages Hiram students in this research work. Each summer Taylor employs Hiram students as research assistants, where they have the opportunity to participate in and make contributions to some cutting edge research projects. A number of Taylor's students are coauthors on publications in leading scientific journals.


Publications by Mark P. Taylor (* indicates undergraduate coauthor):

*51. M.P. Taylor, T.M. Prunty*, and C.M. O'Neil*, All-or-none folding of a flexible polymer chain in cylindrical nano-confinement, Journal of Chemical Physics 152, 094901 (2020).
50. M.P. Taylor, Rigorous results for the partition function of a square-well chain in hard-sphere solvent, Journal of Chemical Physics 147, 166101 (2017) 2 pp.
49. M.P. Taylor, Polymer folding in slit-like nano-confinement, Macromolecules 50, 6967-6976 (2017).
48. B. Werlich, M.P. Taylor, T. Shakirov, and W. Paul, On the pseudo phase diagram of single semi-flexible polymer chains: A flat-histogram Monte Carlo study, Polymers 9, 00038 (2017) 13 pp.
47. M.P. Taylor, W. Paul, and K. Binder, On the polymer physics origins of protein folding thermodynamics, Journal of Chemical Physics 145, 174903 (2016) 10 pp.
*46. M.P. Taylor, Y. Ye*, and S.R. Adhikari*, Conformation of a flexible polymer in explicit solvent: Accurate solvation potentials for Lennard-Jones chains, Journal of Chemical Physics 143, 204901 (2015) 12 pp.
45. B. Werlich, T. Shakirov, M.P. Taylor, and W. Paul, Stochastic approximation Monte Carlo and Wang-Landau Monte Carlo applied to a continuum polymer model, Computer Physics Communications 186, 65-70 (2015).
44. M.P. Taylor and J. Luettmer-Strathmann, Partition function zeros and finite size scaling for polymer adsorption, Journal of Chemical Physics 141, 204906 (2014) 10 pp.
43. B. Werlich, M.P. Taylor, and W. Paul, Wang-Landau and stochastic approximation Monte Carlo for semi-flexible polymer chains, Physics Procedia 57, 82-86 (2014).
*42. M.P. Taylor, P.P. Aung*, and W. Paul, Partition function zeros and phase transitions for a square-well polymer chain, Physical Review E 88, 012604 (2013) 12 pp.
41. M.P. Taylor, W. Paul, and K. Binder, Applications of the Wang-Landau algorithm to phase transitions of a single polymer chain, Polymer Science Series C 55, 23-38 (2013).
*40. M.P. Taylor and S.R. Adhikari*, Conformation of a flexible chain in explicit solvent: Exact solvation potentials for short Lennard-Jones chains, Journal of Chemical Physics 135, 044903 (2011) 11 pp.
39. M.P. Taylor, W. Paul, and K. Binder, Two-state protein-like folding of a homopolymer chain, Physics Procedia 4, 151-160 (2010).
38. M.P. Taylor, W. Paul, and K. Binder, Phase transitions of a single polymer chain: A Wang-Landau simulation study, Journal of Chemical Physics 131, 114907 (2009) 9 pp.
37. M.P. Taylor, W. Paul, and K. Binder, All-or-none proteinlike folding transition of a flexible homopolymer chain, Physical Review E 79, 050801(R) (2009) 4 pp.
36. M.P. Taylor, K. Isik, and J. Luettmer-Strathmann, Dynamics of a single polymer chain: Ergodicity and conformation of a rotating chain, Physical Review E 78, 051805 (2008) 13 pp.
*35. M.P. Taylor and G.M. Petersen*, Solvation potentials for flexible chain molecules in solution: On the validity of a pair-wise decomposition, Journal of Chemical Physics 127, 184901 (2007) 9 pp.
*34. M.P. Taylor and S. Ichida*, Conformation of a polymer chain in explicit solvent: A solvation potential approach, Journal of Polymer Science B: Polymer Physics 45, 3319-3326 (2007).
33. M.P. Taylor, Comment on "The effect of density on the properties of short chain fluids", Journal of Chemical Physics 123, 167101 (2005) 2 pp.
32. M.P. Taylor, Conformation of a polymer chain in solution: An exact density expansion approach, Journal of Chemical Physics 121, 10757-10765 (2004).
31. M.P. Taylor, Collapse transition of isolated square-well chain molecules: The exact density of states for short chains, Journal of Chemical Physics 118, 883-891 (2003).
30. M.P. Taylor, Collapse transition of isolated Lennard-Jones chain molecules: Exact results for short chains, Journal of Chemical Physics 114, 6472-6484 (2001).
29. M.P. Taylor, J. Luettmer-Strathmann, and J.E.G. Lipson, Structure and phase behavior of square-well dimer fluids, Journal of Chemical Physics 114, 5654-5662 (2001).
28. M.P. Taylor and J.E.G. Lipson, Lattice versus continuum models of a polymer chain, Journal of Chemical Physics 111, 8701-8707 (1999).
27. M.P. Taylor and J.E.G. Lipson, A Born-Green-Yvon integral equation theory for self-interacting lattice polymers, Journal of Chemical Physics 109, 7583-7590 (1998).
26. M.P. Taylor and J.E.G. Lipson, Effects of solvent on polymer chain dimensions: A Born-Green-Yvon integral equation study, Fluid Phase Equilibria 150, 641-648 (1998).
25. M.P. Taylor, Some exact results for isolated hard-disk chain and ring molecules, Molecular Physics 92, 265-270 (1997).
*24. M.P. Taylor, J.L. Mar*, and J.E.G. Lipson, Collapse of a ring polymer: Comparison of Monte Carlo and Born-Green-Yvon integral equation results, Journal of Chemical Physics 106, 5181-5188 (1997).
23. M.P. Taylor and J.E.G. Lipson, Collapse of a polymer chain: A Born-Green-Yvon integral equation study, Journal of Chemical Physics 104, 4835-4841 (1996).
22. M.P. Taylor, Configurational statistics for isolated square-well chain molecules: Exact results for short chains, Molecular Physics 86, 73-85 (1995).
21. M.P. Taylor and J.E.G. Lipson, A Born-Green-Yvon equation for flexible chain-molecule fluids: II. Applications to hard-sphere polymers, Journal of Chemical Physics 102, 6272-6279 (1995).
20. M.P. Taylor and J.E.G. Lipson, A Born-Green-Yvon equation for flexible chain-molecule fluids: I. General formalism and numerical results for short hard-sphere chains, Journal of Chemical Physics 102, 2118-2125 (1995).
19. M.P. Taylor, Square-well diatomics: Exact low density results, Molecular Physics 82, 1151-1164 (1994).
18. M.P. Taylor and J.E.G. Lipson, A site-site Born-Green-Yvon equation for hard sphere dimers, Journal of Chemical Physics 100, 518-527 (1994).
17. M.P. Taylor and J.E.G. Lipson, Comment on "A modified superposition approximation to the three body distribution function", Journal of Chemical Physics 99, 5625-5626 (1993).
16. M.P. Taylor and J. Herzfeld, Liquid crystal phases of self-assembled molecular aggregates, Journal of Physics: Condensed Matter 5, 2651-2678 (1993) [review article].
15. M.P. Taylor and J.E.G. Lipson, On the hard sphere bridge function, Journal of Chemical Physics 97, 7851-7852 (1992).
14. M.P. Taylor and J.E.G. Lipson, On the Born-Green-Yvon equation and triplet distributions for hard spheres, Journal of Chemical Physics 97, 4301-4308 (1992).
13. M.P. Taylor and J. Herzfeld, Nematic and smectic order in a fluid of biaxial hard particles, Physical Review A 44, 3742-3751 (1991).
12. M.P. Taylor, Excluded volume for polydisperse spheroplatelets, Liquid Crystals 9, 141-143 (1991).
11. M.P. Taylor and J. Herzfeld, Shape anisotropy and ordered phases in reversibly assembling lyotropic systems, Physical Review A 43, 1892-1905 (1991).
10. J. Herzfeld, N.E. Seidel, M.P. Taylor, P.R. Droupadi, and N.E. Wang, Gentle chemical deoxygenation of hemoglobin solutions, Hemoglobin 14, 399-411 (1990).
9. M.P. Taylor and J. Herzfeld, A model for nematic and columnar ordering in a self-assembling system, Langmuir 6, 911-915 (1990).
8. M.P. Taylor and J. Herzfeld, Phase diagram for reversibly-assembled rod-like aggregates: nematic, columnar and crystalline ordering in Macromolecular Liquids, eds. C.R. Safinya, S.A. Safran and P.A. Pincus (Materials Research Society Symposium Proceedings 177, 1990) pp. 135-140.
7. R. Hentschke, M.P. Taylor, and J. Herzfeld, Equation of state for parallel hard spherocylinders, Physical Review A 40, 1678-1680 (1989).
6. M.P. Taylor, R. Hentschke, and J. Herzfeld, Theory of ordered phases in a system of parallel hard spherocylinders, Physical Review Letters 62, 800-803 & 1577(E) (1989).
5. M.P. Taylor, A.E. Berger, and J. Herzfeld, A model for nematic phases in a reversibly assembling system of hard rods and plates in The Materials Science and Engineering of Rigid-Rod Polymers, eds. W.W. Adams, R.K. Eby and D.E. McLemore (Materials Research Society Symposium Proceedings 134, 1989) pp. 21-26.
4. M.P. Taylor, A.E. Berger, and J. Herzfeld, Theory of amphiphilic liquid crystals: Multiple phase transitions in a model micellar system, Journal of Chemical Physics 91, 528-538 (1989).
3. M.P. Taylor, A.E. Berger, and J. Herzfeld, Theory of liquid crystalline phases in amphiphilic systems, Molecular Crystals Liquid Crystals 157, 489-500 (1988).
2. J. Herzfeld and M.P. Taylor, Unexpected critical points in the nematic behavior of a reversibly polymerizing system, Journal of Chemical Physics 88, 2780-2787 (1988).
*1. W.E. Skiba, M.P. Taylor*, M.S. Wells, J.H. Mangun, and W.M. Awad, Human hepatic methionine biosynthesis. Purification and characterization of betaine:homocysteine S-methyltransferase, Journal of Biological Chemistry 257, 14944-14948 (1982).